11th SEMINAR GROUP FLOW MULTIPHASE
Scientific Initiation Project

Project perforated pipe for inverted shroud

Natan Augusto Vieira Bulgarelli

Supervisor : Prof. Dr. Oscar M. Hernandez Rodriguez
Motivation

- Increase the efficiency of the inverted shroud and avoid the phenomenon of drowning occurs.
Introduction

- Simple modeling of the phenomenon using Homogeneous Model.
- Project criteria to obtain the number of holes:

 Annular pressure drop = Pressure drop through the holes.

\[
\frac{\partial P}{\partial x}_{\text{annular}} = f_m \frac{1}{2} \frac{1}{D_h} \rho_m J^2 + \rho_m g \sin \theta
\]

\[
\frac{\partial P}{\partial x}_{\text{holes}} = f_m l \frac{1}{2} \frac{1}{d} \rho_m V^2
\]
Introduction

- Development of a more realistic phenomenological model:
 - Expansion of the gas phase;
 - Non-linear drop pressure along the flow;

- Hypotheses:
 - Homogeneous model;
 - Steady state;
 - Air as a perfect gas;
 - Incompressible fluid;
Introduction

- Solving a non-homogeneous ODE via the numerical Runge-Kutta fourth order method:

\[\frac{d}{dx} (P + \rho_m J^2) = -\tau_w - \rho_m g \sin \theta \]
Initial results

- Similar behavior between the two models developed for greater slopes:
 - For the project studied, the term of gravitational pressure loss is much higher than the term of the pressure loss due to friction;
The experiment

- The points of drowning were obtained only in inclination of 15 ° to the horizontal;
- For the most critical case (water flow rate of 238.98 l/min and air flow of 11.97 l/min) 96 holes of 5 mm diameter were obtained.
The experiment

- Two PVC pipes of 1.5 m length, each containing 48 holes of diameter 5mm;
The experiment

- Arrangement of the tubes in the separator:
Experimental results

- Comparative analysis:

<table>
<thead>
<tr>
<th></th>
<th>Water flow (l/min)</th>
<th>Efficiency (%)</th>
<th>Lnai (m)</th>
<th>Uncertainty Efficiency (%)</th>
<th>Drowning</th>
</tr>
</thead>
<tbody>
<tr>
<td>No perforated pipe</td>
<td>210,639296</td>
<td>68,833408</td>
<td>2.3</td>
<td>3.7346063</td>
<td>No</td>
</tr>
<tr>
<td>With perforated pipe</td>
<td>211,9755775</td>
<td>84,49035</td>
<td>2,0102065</td>
<td>2.6977865</td>
<td>No</td>
</tr>
<tr>
<td>No perforated pipe</td>
<td>219,9785593</td>
<td>50,4860282</td>
<td>0,7358205</td>
<td>2.9008986</td>
<td>No</td>
</tr>
<tr>
<td>With perforated pipe</td>
<td>219,550799</td>
<td>76,6510365</td>
<td>0,6183335</td>
<td>2.342472</td>
<td>No</td>
</tr>
<tr>
<td>No perforated pipe</td>
<td>224,0061932</td>
<td>50,5718091</td>
<td>0,3020268</td>
<td>6.0960968</td>
<td>No</td>
</tr>
<tr>
<td>With perforated pipe</td>
<td>224,9871005</td>
<td>77,2523165</td>
<td>0,694214</td>
<td>2.355211</td>
<td>No</td>
</tr>
<tr>
<td>No perforated pipe</td>
<td>233,5501872</td>
<td>69,0173363</td>
<td>0,9293938</td>
<td>5.9747723</td>
<td>Yes</td>
</tr>
<tr>
<td>With perforated pipe</td>
<td>233,9057065</td>
<td>85,3147465</td>
<td>1,371604</td>
<td>3.508629</td>
<td>No</td>
</tr>
<tr>
<td>No perforated pipe</td>
<td>238,9802338</td>
<td>70,9664857</td>
<td>1,3383942</td>
<td>5.9357774</td>
<td>Yes</td>
</tr>
<tr>
<td>With perforated pipe</td>
<td>239,0203685</td>
<td>82,8318355</td>
<td>0,3052265</td>
<td>3.3189015</td>
<td>No</td>
</tr>
</tbody>
</table>
Next Steps

- Develop a model for more viscous fluids (example: oil-air flow).
Thank you for the attention!

natan.bulgarelli@usp.br
natanbulgarelli@hotmail.com